Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions

نویسندگان

  • Jean-Christophe Novelli
  • Jean-Yves Thibon
چکیده

Abstract. We introduce analogs of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. When the color set is a semigroup, an internal product can be introduced. This leads to the construction of generalized descent algebras associated with wreath products Γ ≀ Sn and to the corresponding generalizations of quasi-symmetric functions. The associated Hopf algebras appear as natural analogs of McMahon’s multisymmetric functions. As a consequence, we obtain an internal product on ordinary multi-symmetric functions. We extend these constructions to Hopf algebras of colored parking functions, colored non-crossing partitions and parking functions of type B.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Quasi-symmetric Functions of Arbitrary Level

We introduce analogues of the Hopf algebra of Free quasi-symmetric functions with bases labelled by colored permutations. As applications, we recover in a simple way the descent algebras associated with wreath products Γ ≀ Sn and the corresponding generalizations of quasi-symmetric functions. Finally, we obtain Hopf algebras of colored parking functions, colored non-crossing partitions and park...

متن کامل

Noncommutative Symmetric Functions Iv: Quantum Linear Groups and Hecke Algebras at Q = 0

We present representation theoretical interpretations of quasi-symmetric functions and noncommutative symmetric functions in terms of quantum linear groups and Hecke algebras at q = 0. We obtain in this way a noncommutative realization of quasi-symmetric functions analogous to the plactic symmetric functions of Lascoux and Sch utzenberger.The generic case leads to a notion of quantum Schur func...

متن کامل

The algebraic combinatorics of snakes

Snakes are analogues of alternating permutations defined for any Coxeter group. We study these objects from the point of view of combinatorial Hopf algebras, such as noncommutative symmetric functions and their generalizations. The main purpose is to show that several properties of the generating functions of snakes, such as differential equations or closed form as trigonometric functions, can ...

متن کامل

Inversion of some series of free quasi-symmetric functions

The algebra of Free Quasi-Symmetric Functions FQSym [5] is a graded algebra of noncommutative polynomials whose bases are parametrized by permutations. Under commutative image, it is mapped onto Gessel’s algebra of quasi-symmetric functions, whence its name. Quasi-symmetric functions generalize symmetric functions in a natural way, and many classical results admit quasi-symmetric extensions or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 310  شماره 

صفحات  -

تاریخ انتشار 2010